CHARACTERIZATION AND PYROLYSIS OF TOMATO VEGETABLE WASTE FROM THE AGRUPAR GREENHOUSES

Main Article Content

SERGIO MEDINA
Washington Gonzalo Chiriboga Gavidia
Washington Polibio Ruiz López
Alejandro Javier Delgado Araujo

Abstract

The generation of vegetable waste is significant. One effective way to valorize this waste is through slow pyrolysis. Thermogravimetric analysis (TGA) is employed to characterize the samples and examine their thermal behavior. This technique provides insights into the potential of vegetable waste as a source of energy and value-added products. This study focuses on characterizing tomato vegetable waste sourced from the AGRUPAR-Quito project's greenhouses. The objective is to analyze its chemical structure and thermal behavior. The research involves conducting elemental analysis, determining chemical composition through deconvolution, calculating calorific value using the Dulong formula, and measuring pH and electrical conductivity. Proximate analysis is carried out using the TGA technique. To investigate the thermal behavior, TGA is performed in both inert (N₂) and oxidizing (air) atmospheres. Key results and conclusions indicate that tomato waste has a calorific value of 12.4 MJ/kg at neutral pH. The primary chemical component identified is hemicellulose, constituting 66.5% of the waste. The fixed carbon content is 14.1%, with hydrogen-to-carbon (H/C) and oxygen-to-carbon (O/C) molar ratios of 0.9 and 0.52, respectively. These characteristics suggest that the waste is suitable for biochar production, which can then be utilized as a soil amendment for agricultural purposes. The volatile fraction, comprising 58.4%, has potential applications in generating gaseous and liquid fuels, as well as producing various industrial products. The thermal behavior of waste resembles that of lignocellulosic materials, displaying characteristic peaks during each decomposition process in both inert and oxidizing atmospheres.

Downloads

Download data is not yet available.

Article Details

How to Cite
MEDINA, S., Chiriboga Gavidia, W. G., Ruiz López, W. P., & Delgado Araujo, A. J. (2025). CHARACTERIZATION AND PYROLYSIS OF TOMATO VEGETABLE WASTE FROM THE AGRUPAR GREENHOUSES. ECOCIENCIA Scientific Journal, 12(4), 1–18. https://doi.org/10.21855/ecociencia.124.1073
Section
Artículos
Author Biographies

SERGIO MEDINA, UNIVERSIDAD CENTRAL DEL ECUADOR

Ingeniero Químico, MBA en Gerencia Empresarial, Magíster en Ingeniería Industrial, MBA en Energías
Renovables, PhD en Ingeniería Química. Docente titular a tiempo completo en la Facultad de Ingeniería Química de la Universidad Central del Ecuador.

Washington Gonzalo Chiriboga Gavidia, Universidad Central Del Ecuador

Ingeniero Químico, Máster en Gestión Dirección de Proyectos, Máster en Sistemas de Energía, Doctor en ciencias en Oceanografía Química. Docente de la  Universidad Central del Ecuador en la Facultad de Ingeniería Química

Washington Polibio Ruiz López, Universidad Central Del Ecuador

Ingeniero Químico graduado en la Universidad Central del Ecuador, Magíster en Sistemas Integrados de
Gestión.

Alejandro Javier Delgado Araujo, Universidad Central del Ecuador

Ingeniero Químico graduado en la Universidad Central del Ecuador, Magíster en Diseño, Producción y
Automatización industrial.

References

Agnol, L. D., Neves, R. M., Maraschin, M., Moura, S., Ornaghi, H. L., Dias, F. T. G., & Bianchi, O. (2021). Green synthesis of Spirulina-based carbon dots for stimulating agricultural plant growth. Sustainable Materials and Technologies, 30, pp. 347-358. https://doi.org/10.1016/j.susmat.2021.e00347

AGRUPAR. (2021). Invernaderos urbanos y suburbanos Quito. [Documento informativo]. https://interlace-hub.com/es/quito-y-su-agricultura-urbana-agrupar

Apaydin-Varol, E., & Pütün, A. E. (2012). Preparation and characterization of pyrolytic chars from different biomass samples. Journal of Analytical and Applied Pyrolysis, 98, pp. 29–36. https://doi.org/10.1016/j.jaap.2012.07.001

Arauzo, J., Bimbela, F., Ábrego, J., Sánchez, J.L., y Gonzalo, A. (2014). Introducción a las tecnologías de aprovechamiento de biomasa. Boletín del Grupo Español del Carbón, 33, pp. 2-6. http://www.gecarbon.org/boletines/articulos/BoletinGEC_033-A01.pdf

Banco Mundial, 2018. Desechos 2.0: Un panorama mundial de la gestión de desechos sólidos hasta 2050. https://openknowledge.worldbank.org/handle/10986/30317

Brassard, P., Godbout, S., Lévesque, V., Palacios, J., Raghavan, V., Ahmed, A., Hogue, R., Jeanne, T., & Verma, M. (2019). Biochar for soil amendment. Char and Carbon Materials Derived from Biomass. 4, pp. 110-145. Elsevier inc. https://doi.org/10.1016/B978-0-12-814893-8.00004-3

Center for Clean Air Policy. (2017). Estudio de basura en Quito. [Reporte Informativo Municipio de Quito]. file:///C:/Users/User/Downloads/Dialnet-CaracterizacionDeLosResiduosSolidosUrbanosYDesperd-9016356.pdf

Chen, W. H., Wang, C. W., Ong, H. C., Show, P. L., & Hsieh, T. H. (2019). Torrefaction, pyrolysis and two-stage thermodegradation of hemicellulose, cellulose and lignin. Fuel, 258, pp. 116168-116181. Springer. https://doi.org/10.1016/j.fuel.2019.116168

Encinar, J. M., González, J. F., & Martínez, G. (2008). Energetic use of the tomato plant waste. Fuel Processing Technology, 89(11), pp. 1193–1200. https://doi.org/10.1016/j.fuproc.2008.05.011

Font, R., Moltó, J., Gálvez, A., & Rey, M. D. (2009). Kinetic study of the pyrolysis and combustion of tomato plant. Journal of Analytical and Applied Pyrolysis, 85(1–2), pp. 268–275. https://doi.org/10.1016/j.jaap.2008.11.026

Goyal, H. B., Seal, D., & Saxena, R. C. (2008). Bio-fuels from thermochemical conversion of renewable resources: A review. Renewable and Sustainable Energy Reviews, 12, pp. 504–517. https://doi.org/10.1016/j.rser.2006.07.014

Hidayat, S., Abu Bakar, M. S., Yang, Y., Phusunti, N., & Bridgwater, A. V. (2018). Characterisation and Py-GC/MS analysis of Imperata Cylindrica as potential biomass for bio-oil production in Brunei Darussalam. Journal of Analytical and Applied Pyrolysis, 134, pp. 510–519. https://doi.org/10.1016/j.jaap.2018.07.018

Joseph, S., Cowie, A. L., Van Zwieten, L., Bolan, N., Budai, A., Buss, W., Cayuela, M. L., Graber, E. R., Ippolito, J. A., Kuzyakov, Y., Luo, Y., Ok, Y. S., Palansooriya, K. N., Shepherd, J., Stephens, S., Weng, Z., & Lehmann, J. (2021). How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy, 13(11), pp. 1731–1764. https://doi.org/10.1111/gcbb.12885

Llorach-Massana, P., Lopez-Capel, E., Peña, J., Rieradevall, J., Montero, J. I., & Puy, N. (2017). Technical feasibility and carbon footprint of biochar co-production with tomato plant residue. Waste Management, 67, pp. 121–130. https://doi.org/10.1016/j.wasman.2017.05.021

Luo, X., Liu, G., Xia, Y., Chen, L., Jiang, Z., Zheng, H., & Wang, Z. (2017). Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China. Journal of Soils and Sediments, 17(3), pp. 780–789. https://doi.org/10.1007/s11368-016-1361-1

Medina Romo, S. H., 2023. Producción de biocarbón por pirólisis lenta a partir de biomasa residual de invernaderos urbanos y su aplicación en la mejora de la productividad de los mismos. Ph.D. tesis inédita. Universidad de Alicante.

Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A. R., & Lehmann, J. (2012). Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils, 48(3), pp. 271–284. https://doi.org/10.1007/s00374-011-0624-7

Rojas González, A. y Flores Montes, C. (2019). Valorizacion de residuos de frutas para combustión y pirólisis. Revista Politecnica, 15, pp. 42–53. https://doi.org/https://doi.org/10.33571/rpolitec.v15n28a4. file:///C:/Users/User/Downloads/Valorizacion_de_residuos_de_frutas_para_combustion.pdf

Ronsse, F, Dickinson, D., Nachenius, R., & Prins, W. (2013a). Biomass pyrolysis and biochar characterization. Forebiom Workshop 2013, [Department Of Biosystems Engineering, Faculty of Bioscience Engineering, Ghent University (Belgium)], pp. 1–24. https://www.oeaw.ac.at/forebiom/WS1lectures/SessionII_Ronsse.pdf

Rueda-Ordóñez, Y., & Tannous, K. (2017). Análisis cinético de la descomposición térmica de biomasas aplicando un esquema de reacciones paralelas independientes. UIS Ingenierías 16(2), pp. 119–127. https://doi.org/10.18273/revuin.v16n2-2017011

Sanchez-Hervas, J.M, Ortiz, I., Márquez, A., Fernández-Fernández, A.M., Canivell, M., y Ruiz, E. (2023). Pirólisis de biomasa y residuos como estrategia de producción sostenible y simbio-sis industrial en la comunidad de Madrid (España). Tecnología en Marcha. 36, número especial. Encuentro Iberoamericano en Biomasa y Bioenergía, pp. 45-54. https://doi.org/10.18845/tm.v36i10.7010

Tripathi, M., Sahu, J. N., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, pp. 467–481. https://doi.org/10.1016/j.rser.2015.10.122

Tursi, A. (2019). A review on biomass: Importance, chemistry, classification, and conversion. Biofuel Research Journal, 6, pp. 962–979. https://doi.org/10.18331/BRJ2019.6.2.3

Shen, D., Xiao, R., Gu, S., & Zhang, H. (2013). The Overview of Thermal Decomposition of Cellulose in Lignocellulosic Biomass. Cellulose - Biomass Conversion. https://doi.org/10.5772/51883

Sun, J., Norouzi, O., & Mašek, O. (2022). A state-of-the-art review on algae pyrolysis for bioenergy and biochar production. Bioresource Technology, 346, pp. 126258-126272. https://doi.org/10.1016/j.biortech.2021.126258

Wang, B., Xu, F., Zong, P., Zhang, J., Tian, Y., & Qiao, Y. (2019). Effects of heating rate on fast pyrolysis behavior and product distribution of Jerusalem artichoke stalk by using TG-FTIR and Py-GC/MS. Renewable Energy, 132, pp. 486–496. https://doi.org/10.1016/j.renene.2018.08.021