Minería de Datos Educacionales: Descubrir tesoros ocultos durante el aprendizaje Educational Data Mining: Discover hidden treasures during learning

Contenido principal del artículo

Roberto García Sánchez, Mgtr.
Jorge Gil Mateos, Ph.D.

Resumen

El presente trabajo aborda el tema de la minería de datos educacionales, una disciplina relativamente joven, con el objetivo de presentar definiciones, conceptos y relaciones sobre minería de datos, huella digital y minería de datos educacionales. La metodología empleada para este objetivo se sustenta en una amplia revisión bibliográfica sobre el estado de desarrollo de la minería de datos educacionales. Además, se presentan algunas de las herramientas, técnicas y utilidades más significativas en este campo, como la clasificación y predicción, clustering, detección de valores extremos, minería de relaciones, análisis de redes sociales, procesos de minería, minería de texto, procesamiento para análisis humano y descubrimiento mediante modelos. Como principal conclusión, se destaca la imperativa necesidad de incorporar la minería de datos en el ámbito educacional, con el propósito de esclarecer el camino a los docentes, encargados de administrar los procesos de formación, y autoridades a que se interesen en incursionar en este campo en favor de la educación virtual o en línea para revalorizar la educación y favorecer el proceso de enseñanza-aprendizaje en favor del estudiante.


 


 


 

Descargas

La descarga de datos todavía no está disponible.

Detalles del artículo

Cómo citar
García Sánchez, R. ., & Gil Mateos, J. E. (2023). Minería de Datos Educacionales: Descubrir tesoros ocultos durante el aprendizaje: Educational Data Mining: Discover hidden treasures during learning. REVISTA CIENTÍFICA ECOCIENCIA, 10(Edición Especial), 18–41. https://doi.org/10.21855/ecociencia.100.830
Sección
Artículos

Citas

Amershi, S., & Conati, C. (2009). Combining Unsupervised and Supervised Classification to Build User Models for Exploratory Learning Environments. En Journal of Educational Data Mining, Article (Vol. 2, Número 1).

Anaya, A. R., & Boticario, J. G. (2009). A Data Mining Approach to Reveal Representative Collaboration Indicators in Open Collaboration Frameworks. EDM 2009.

Arnold, K. (2010). Signals: Applying Academic Analytics | EDUCAUSE. Educause Quarterly, 33, 1-10.

Arnold, K. E., & Pistilli, M. D. (2012). Course signals at Purdue: Using learning analytics to increase student success. In Proceedings of the 2nd International Conference on Learning Analytics and Knowledge (pp. 267-270).

Arroyo, I., Ferguson, K., Johns, J., Dragon, T., Meheranian, H., Fisher, D., Barto, A., Mahadevan, S., & Woolf, B. (2007). Repairing Disengagement With Non-Invasive Interventions. Artificial Intelligence in Education, 158(January).

Baker, R. S. J. d. (2010). Data mining for education. International Encyclopedia of Education, 7, 112-118. https://doi.org/10.4018/978-1-59140-557-3

Baker, R. S. J. D., Corbett, A. T., Koedinger, K. R., Evenson, S., Roll, I., Wagner, A. Z., Naim, M., Raspat, J., Baker, D. J., & Beck, J. E. (2006). Adapting to when students game an intelligent tutoring system. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4053 LNCS, 392-401. https://doi.org/10.1007/11774303_39

Baker, R. S. J. D., & Gowda, S. M. (s. f.). Automatically Detecting a Student’s Preparation for Future Learning: Help Use is Key.

Baker, R. S. J. D., & Yacef, K. (2009). The State of Educational Data Mining in 2009: A Review and Future Visions. Journal of Educational Data Mining, 1(1).

Baker, R. S. J., & Inventado, P. S. (2014). Chapter 4: Educational Data Mining and Learning Analytics. Springer, Chapter 4, 61-75.

Baker, R. S., & Siemens, G. (2014). Educational data mining and learning analytics. Learning Analytics: Foundations, Applications, and Future Directions, 61-75.

Bienkowski, M., Feng, M., & Means, B. (2012). Enhancing teaching and learning through educational data mining and learning analytics: An issue brief. Washington, DC: SRI International, 1-57.

Bogarín, A., Cerezo, R., & Romero, C. (2018). A survey on educational process mining. WIREs Data Mining and Knowledge Discovery, 8. https://doi.org/doi: 10.1002/widm.1230

Calvet Liñán, L., & Juan Pérez, Á. A. (2015). Educational Data Mining and Learning Analytics: differences, similarities, and time evolution. RUSC. Universities and Knowledge Society Journal, 12(3), 98. https://doi.org/10.7238/rusc.v12i3.2515

Corbett, A. T., & Anderson, J. R. (1994). Knowledge tracing: Modeling the acquisition of procedural knowledge. User Modeling and User-Adapted Interaction, 4(4), 253-278. https://doi.org/10.1007/BF01099821

Daradoumis, T., Ardura, I. R., Faulin, J., Juan, A. A., Xhafa, F., & Lopez, F. J. M. (2010). Customer Relationship Management applied to higher education: developing an e-monitoring system to improve relationships in electronic learning environments. International Journal of Services Technology and Management, 14(1), 103. https://doi.org/10.1504/IJSTM.2010.032887

Daradoumis, T., Juan, A. A., Lera-López, F., & Faulin, J. (2010). Using Collaboration Strategies to Support the Monitoring of Online Collaborative Learning Activity (pp. 271-277). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13166-0_39

García, E., Bernardo, M., Gutiérrez, A. B., & Rodríguez-Muñiz, L. J. (2016). Persistence in university studies: The importance of a good start. En Aula Abierta (Vol. 44, Número 1, pp. 1-6). Elsevier Doyma. https://doi.org/10.1016/j.aula.2015.04.001

Galetsi, P., Katsaliaki, K., & Kumar, S. (2020). Big data analytics in health sector: Theoretical framework, techniques and prospects. International Journal of Information Management, 50(March 2019), 206-216. https://doi.org/10.1016/j.ijinfomgt.2019.05.003

George, D. M., George, A. E., & George, K. L. (2020). Big Data Just Got Bigger: Implications of Real-World Evidence and Patient-Entered Data on Health Care and Health Care Policy. American Journal of Lifestyle Medicine, 14(1), 40-42. https://doi.org/10.1177/1559827619882605

Huebner, R. (2013). A survey of educational data-mining research. Research in Higher Education Journal, 19.

IBM. (2017). Infographic: The Four V’s of Big Data. IBM Big Data & Analytics Hub. https://www.ibmbigdatahub.com/infographic/four-vs-big-data

Jaramillo, A., & Paz-Arias, H. (2015). Aplicación de Técnicas de Minería de Datos para Determinar las Interacciones de los Estudiantes en un Entorno Virtual de Aprendizaje. Revista Tecnológica ESPOL – RTE, 28(1), 64-90.

Jiménez, Á., & Álvarez, H. (2010). Minería de Datos en la Educación. Revista de Inteligencia en Redes de Comunicación, 2-29.

Juan, A. A., Daradoumis, T., Faulin, J., & Xhafa, F. (2009). A data analysis model based on control charts to monitor online learning processes. International Journal of Business Intelligence and Data Mining, 4(2), 159. https://doi.org/10.1504/ijbidm.2009.026906

Khan, M. A. U. D., Uddin, M. F., & Gupta, N. (2014). Seven V’s of Big Data understanding Big Data to extract value. Proceedings of the 2014 Zone 1 Conference of the American Society for Engineering Education - «Engineering Education: Industry Involvement and Interdisciplinary Trends», ASEE Zone 1 2014. https://doi.org/10.1109/ASEEZone1.2014.6820689

Kop, R. (2010). The design and development of a Personal Learning Environment. Archives des publications du CNRC.

Kotsiantis, S. B., Pierrakeas, C., & Pintelas, P. (2004). Predicting students' performance in distance learning using machine learning techniques. Applied Artificial Intelligence, 18(5), 411-426.

Maheshwari, A. K. (2015). Business Intelligence and Data Mining. Business Expert Press, LLC.

Mazza, R., & Milani, C. (2004). GISMO: A Graphical Interactive Student Monitoring Tool for Course Management Systems. Computer Science.

Menacho Chiok, C. H. (2017). Predicción del rendimiento académico aplicando técnicas de minería de datos. Anales Científicos, 78(1), 26. https://doi.org/10.21704/ac.v78i1.811

Merceron, A., & Yacef, K. (2010). Measuring Correlation of Strong Symmetric Association Rules in Educational Data (pp. 245-256). https://doi.org/10.1201/b10274-20

Mohamad, S. K., & Tasir, Z. (2013). Educational Data Mining: A Review. Procedia - Social and Behavioral Sciences, 97, 320-324. https://doi.org/10.1016/j.sbspro.2013.10.240

Morales, J., Trujillo, V., & Santana, H. (2019). Minería de datos en educación: una revisión literaria. Espamciencia, 10(1), 14-20.

Papamitsiou, Z., & Economides, A. A. (2014). Learning Analytics and Educational Data Mining in Practice: A Systematic Literature Review of Empirical Evidence. Educational Technology & Society, 17(4), 49-64.

Pérez-Palacios, T., Caballero, D., Caro, A., Rodríguez, P. G., & Antequera, T. (2014). Applying data mining and Computer Vision Techniques to MRI to estimate quality traits in Iberian hams. Journal of Food Engineering, 131, 82-88. https://doi.org/10.1016/j.jfoodeng.2014.01.015

Rabbany, R., Takaffoli, M., & Zaïane, O. R. (2011). Analyzing Participation of Students in Online Courses Using Social Network Analysis Techniques. International Conference on Educational Data Mining.

Ray, S., & Saeed, M. (2018). Applications of educational data mining and learning analytics tools in handling big data in higher education. Applications of Big Data Analytics: Trends, Issues, and Challenges, 135-160. https://doi.org/10.1007/978-3-319-76472-6_7

Romero, C., Espejo, P. G., Zafra, A., Romero, J. R., & Ventura, S. (2010). Web usage mining for predicting final marks of students that use Moodle courses. Computer Applications in Engineering Education, 21(1), 135-146. https://doi.org/10.1002/cae.20456

Romero, C., López, M. I., Luna, J. M., & Ventura, S. (2013). Predicting students' final performance from participation in on-line discussion forums. Computers & Education, 68, 458-472.

Romero, C., & Ventura, S. (2013). Data mining in education. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3(1), 12-27. https://doi.org/10.1002/widm.1075

Romero, C., Ventura, S., & García, E. (2008). Data mining in course management systems: Moodle case study and tutorial. Computers and Education, 51(1), 368-384. https://doi.org/10.1016/j.compedu.2007.05.016

Romero, C., Ventura, S., Pechenizkiy, M., & Baker, R. S. J. d. (2010). Handbook of Educational Data Mining. CRC Press.

Shaun, R., Baker, J. De, & Eds, J. E. B. (2008). Educational Data Mining 2008 The 1 st International Conference on Educational Data Mining. Network, January, 187.

Sánchez-Rada, J. F., Iglesias, C. A., & García-Serrano, A. (2011). Towards an automatic early detection of student's difficulty: Logical models rule. Computers & Education, 56(3), 573-582.

Siemens, G., & Baker, R. S. J. D. (2012a). Learning analytics and educational data mining. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge - LAK ’12, 252. https://doi.org/10.1145/2330601.2330661

Siemens, G., & Baker, R. S. J. D. (2012b). Learning analytics and educational data mining: Towards communication and collaboration. ACM International Conference Proceeding Series, December, 252-254. https://doi.org/10.1145/2330601.2330661Tane, J., Schmitz, C., & Stumme, G. (2004). Semantic resource management for the web: An elearning application. Proceedings of the 13th International World Wide Web Conference on Alternate Track, Papers and Posters, WWW Alt. 2004, 1-10. https://doi.org/10.1145/1013367.1013369

Uddin, M. F., & Lee, J. (2016). We Are What We Generate - Understanding Ourselves Through Our Data. Procedia Computer Science, 95, 335-344. https://doi.org/10.1016/j.procs.2016.09.343

Ueno, M. (2004). Online Outlier Detection System for Learning Time Data in E-Learning and Its Evaluation. Triangulation of Bayesian networks View project Learning Bayesian networks View project online outlier detection system for learning time data in e-learning and it’s evaluation.